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Reclaiming the Classroom through Design 
Science Research: 
Designing scalability in required college courses. 
 
Abstract In this work, we show how digital innovation can put pressure on the quality of education by 
creating financial incentives for moving classes online. We posit that design science enables us to create 
quality courses despite these financial pressures, and we address the design problem of delivering a 
required in-class introductory college course that can scale to large numbers of students, under resource 
constraint. The point of departure for our work is the centrality of human interactions in learning 
environments and we conceptualize a college course as a socio-technical artifact. From intervention theory, 
we draw meta-requirements that can guide the design of college courses that leverage IT to enable the 
professor to scale the course while maintaining their role as the course designer and lead. The paper uses 
the design-build-evaluate cycle of design science research to instantiate the ST artifact and demonstrate its 
feasibility. Based on the evaluation of the first instantiation, during a full semester course, we refine the 
original design principles for the class scalable required in-class college courses. 

 

Keywords Digital innovation · Socio-technical artifact · Design science research · Information systems 
education 
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1. Introduction 
There is little doubt that digital technology has transformed society as we know it. Over the last few decades, 
digital innovation was instrumental in creating new products and services, new business models and value 
creation paradigms. More broadly, it helped transform entire industries (Watson et al. 2017; Nambisan et 
al. 2017). However, digital innovation and digital transformation engender unintended consequences and 
risks, and these risks often go understudied by Information Systems research (Gregor and Hevner 2013; 
Silver and Markus 2013). In this paper, we turn our attention to a wicked problem (Buchanan 1992) 
confronting higher education: the need to balance efficiency with quality education. 

Under financial pressure, many universities have responded by increasing classroom size and substituting 
online courses for campus-based activities. Massive Open Online Courses (MOOC) MOOCs and Virtual 
Learning Environments (VLE) have proven to be effective alternatives for students in remote locations 
(Chatterjee and Nath 2014), students who cannot afford traditional education (Dillahunt et al. 2014), or 
students who just need to refresh their academic background (Hew and Cheung 2014). Yet, there is a 
growing consensus in the literature on effective college education that points to human relationships 
between peers and between the instructor and the students as the catalyst for high-quality college education 
(Kalay, 2004; Bernard et al., 2009; Gebre, Saroyan and Bracewell, 2014). 
With respect to class size, recent research converged toward the consensus position that the learning and 
teaching experience degrade as the student-instructor ration increases. Specifically, at the college level 
larger classes are associated with lower subject matter mastery, as measured by grades (Kokkelenberg et al. 
2008), particularly for students who are at the top of the grade distribution (Bandiera et al. 2010). Further, 
interaction and engagement decrease and students in large classes remain anonymous, leading to a lower 
motivation for both faculty and students (Chambliss and Takacs 2014). The most effective teachers carefully 
motivate student learning by articulating and reinforcing the “payoff” of knowledge acquisition while giving 
students a sense of control over their achievement (Bain 2004). Larger classes limit the human interaction 
that teachers traditionally leverage to motivate students, leading to a regression toward using grades as a 
motivator. The lack of human interaction also fosters strategic learning – which occurs when students focus 
“primarily on doing well in school, avoiding any challenges that will harm their academic performance and 
record” (Bain 2004). Our work is motivated by the need to scale an introductory information systems course 
to prepare about 1,000 business college freshmen per year. The point of departure for our work is the 
centrality of human interactions in learning environments.  
Conceptualizing a semester-long college course is an act of design – “engineering an environment in which 
[students] learn” (Bain 2004). Thus, our program of research tackles the challenge of designing a required 
in-class introductory college course that can scale to large numbers of students, under resource 
constraint. We argue that the design science paradigm is best suited to our goal because it is a problem-
solving paradigm (Hevner et al. 2004). We conceptualize the crafting of a university course as the design of 
a Socio-Technical (ST) artifact (Gregor and Hevner 2013; Silver and Markus 2013), substantiated by the 
interplay of IT, people, processes and organizational structures. For those universities where the pressure 
on efficiency is irreversible, we submit that design science research enables information systems scholars 
to uncover and test course designs that optimize the seemingly competing pressures of quality and efficient 
education.  

The plan for this paper is as follow. We first frame the class of problems we are focusing on. We then 
introduce our kernel theory (Walls et al. 1992): intervention theory. Next, we articulate a set of meta-
requirements and design principles drawn from the kernel theory, as applied to our specific class of 
problems. Following, we discuss the artifact we built and describe the first design iteration. Next, we 
evaluate the design and show that the artifact can be constructed, that it will work, and that it will be used 
by the intended audience. Finally, we use the evaluation to draw feedback for a designing a second 
instantiation, which we articulate in the discussion section of the paper.  
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2. Problem Definition 
Our work focuses on a standard introductory course in a large state business school in the United States of 
America. The course is titled “Introduction to Management Information Systems” and it is required of all 
first-year business and economics majors. According to the description, the course covers “the role of 
information technology in business including the development and use of information systems, hardware 
and software, the strategic impact of IT for businesses and the nature of the IT career; utilization of 
management information systems to improve managerial decision-making.” Since its inception in the mid-
1990s, the course also had a practical component focused on proficiency with individual productivity tools 
(e.g., Microsoft Excel). Over the last five years, an average of 1,563 students per year enrolled in the 
course(Author Cited). A similar course is on the books at most major undergraduate business programs. 
Over the last decade, the course increasingly migrated from the classroom to an online delivery. Resource 
constraint, rather than pedagogical superiority, was the primary driver of this decision. After some 
experimentation, the department settled on a major vendor system with the following features: 

• Online Books: All content is delivered online. 
• Virtual Microsoft Office environment: No software installation required, a simulated application 

runs in the Web browser.  
• Assignments: The instructor assigns specific skills for the students to practice as graded homework 

and quizzes.  
• Gradebook: Assignments are automatically graded, and the instructor receives a standardized 

report. 
• Search: Users can navigate directly to content referring to a specific skill. 
• Videos and interactive “Guide Me” pages: Screen capture videos that demonstrate how to complete 

individual skills. 
 
The application automatically grades the work students performed in the simulated environment. It can 
also evaluate “projects” – structured assignments the student completed using the actual software 
application (e.g., Excel). As documented elsewhere (Author Cited), the introduction of the system resulted 
in some positive intended consequences and some negative unintended consequences. Specifically, the 
migration to the online delivery brought increased efficiency – defined as student throughput per section. 
These efficiencies translate into salary savings exceeding $5.5 million between 2001 and 2016. While it is 
hard to assess the effectiveness of the course without a formal evaluation, instructors indicated that an in-
class delivery “is better” from a pedagogical standpoint, but infeasible with large sections (Author Cited). 
Amongst the primary limitations, they identified the inability to illustrate particularly difficult concepts, to 
respond to questions in real time, to convey tacit knowledge (e.g., tips and tricks) that improve students’ 
efficiency and effectiveness. They also lamented the inherent limitations of using a simulated software 
environment rather than having students practice directly in the software (e.g., Microsoft Excel). More 
surprisingly, the online delivery engendered some unintended consequence: role reversal, minimization of 
human interaction, and strategic learning (Author Cited).  
Role reversal refers to the “digitization of the professor” whereby the “course solution,” over time, disrupts 
the role of the teacher and takes over fundamental teaching activities. As the department gravitated 
increasingly toward the online delivery, control of both the content and the pedagogy shifted to the digital 
“course solution.” Practical skills (e.g., Microsoft Office) became predominant over the theoretical concepts 
listed in the course description and the instructors were relegated to course administration and support. 

Minimization of student interaction refers to a course design that steers students toward online resources 
rather than fostering human interaction with faculty members. In the course, only 6% of enrolled students 
visited an instructor for at least one face-to-face meeting. All other communication occurred via email, with 
54 out of 163 students sending at least one message. Thus, 66.9% of students never interacted with a faculty 
member at all (all those who interacted face to face also sent email communications). Further, 71.2% of 
messages pertained to administrative and procedural questions (e.g., “I was wondering [about] the 
difference between the $135 price and the $180. What comes with each price?”), 26% of the messages 
pertained to software issues (e.g., “I uploaded my file and I got 100% on it, and when I went to press submit 
it would not let me but it showed up at the bottom that I did get a 100%”), and only the remaining 2.3% was 
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devoted to content questions (e.g., “I just finished the project but I’m confused on how to print preview the 
workbook since there is no file tab”). These results are based on an analysis of all communication in a section 
of the online course (enrollment 171 students). However, they are consistent with previous evaluations by 
instructors involved in the course (Authors citations) and conform to a ‘‘technology-shaping perspective’’ 
(Markus 2005) whereby even small differences in ST artifact design lead to significant differences in the 
pattern of use over time (Palen and Grudin 2003). 
The lack of human interaction also appeared to foster strategic learning. While strategic learning is not 
exclusive to online courses, it can be exacerbated when performance goals are set based on extrinsic 
motivators (e.g., the grade) rather than a mastery orientation.  
Note that the department did not plan for role reversal, minimization of human interaction, and strategic 
learning. These were intended outcomes of the migration to the online learning environment that, we argue, 
stem from the lack of a “purposeful organization of resources” (Hevner et al. 2004) designed to create an 
introductory college course that can scale to large numbers of students, under resource constraint. In the 
remainder of this paper we investigate a competing design that uses technology to enable, rather than 
substitute, the professor. 

3. Designing the Artifact: A Scalable Course 
While our context is a college of business required introductory course in Information System, with our 
design we seek to inform solutions for a class of problems (Sein et al. 2011): the design of in-class required 
introductory college course that can scale to large numbers of students, under resource constraint. In 
keeping with design science fundamentals (Walls et al. 1992; Hevner et al. 2004; Sein et al. 2011), we derive 
requirements from kernel theories and formulate design principles to guide the development of the system. 
Once the ST artifact is implemented, we leverage observations of usage to evaluate results and, refine the 
design principles and implementation.  

3.1. Kernel Theory: Intervention Theory 

In Intervention Theory and Method, Chris Argyris posits that “to intervene is to enter in an ongoing system 
of relationships […] An intervenor, in this view, assists a system to become more effective in problem 
solving, decision making and decision implementation in such a way that the system can continue to be 
increasingly effective in these activities and have a decreasing need for the intervenor” (Argyris 1970). 
Intervention theory identifies three principles that guide the design of interventions: leveraging valid and 
useful information, allowing free informed choice by the client, and fostering internal commitment. Valid 
information is that which can be verified and has been shown to affect the phenomena the intervenor is 
seeking to influence. Useful information is that which the client would be able to use to “control their 
destiny” (Argyris 1970). From an intervention theory standpoint, natural aptitude provides valid, but not 
useful information while study habits provide both valid and useful information. Free informed choice 
points to the centrality of the client in the implementation of the intervention – and therefore in its design. 
A free and informed choice is particularly important in situations like college learning, where internal 
commitment is a precondition to the success of the intervention. Internal commitment refers to the degree 
of ownership and responsibility the client feels with respect to the intervention. The power of internal 
commitment comes from individuals’ sense of purpose for the initiative and their beliefs about the control 
they exert over their action and the outcome. 
The three principles of intervention theory are interdependent. The availability of valid and useful 
information is necessary for the client to make decisions that are free and informed. At the same time, the 
outcome of these decisions provides information that contributes to the stock of valid and useful 
information available to the client and the intervenor. Moreover, to the extent that the results of choices 
being made by the client are positive, those choices should strengthen internal commitment (Argyris 1970).  

3.2. Meta-Requirements and Design Principles Discovery 

We conceptualize the course as an ST artifact. Thus, drawing on intervention theory, we advance meta-
requirements for system design that include both IT-dominant and organization-dominant elements (Sein 
et al. 2011). We organize the meta-requirements along the three principles of intervention theory. 
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3.2.1. Valid Information through Digital Data Streaming  

Since the introduction of computers in business and organizations, information systems theorists have 
recognized the potential of information technology to create digital representations of processes and 
activities (Yoo 2010). The computer mediation of everyday activities generates digital representations of 
events at their inception, a phenomenon known in the literature as digital data genesis (Piccoli and Watson 
2008). A Digital Data Stream (DDS) is a “continuous digital encoding and transmission of data describing 
a related class of events” (Pigni et al. 2016). A DDS channels the digital representation of a class of events 
at their inception and makes them available for harvesting by organizations (Piccoli and Pigni 2013). In 
some instances, the DDS is available as a byproduct of existing systems, in others, the firm consciously 
generates it by deploying the needed technology. We argue that the digital transformation of an 
introductory college course should focus on tapping into, or generating, the DDS that yield valid and useful 
data. This meta-requirement calls for the proactive design of real-time data collection of students’ 
behaviors.  
MR1: The ST artifact supporting large introductory college courses should record all students’ behaviors. 

• DP1.1: Generate an attendance DDS for all physical activities (e.g., class session, lab sessions). 
• DP1.2: Generate a resources utilization DDS for required and optional resources (e.g., readings, 

homework). 
• DP1.3: Generate a completion and performance DDS for required and optional assignments. 
• DP1.4: Generate an interaction DDS for tracking communication. 

3.2.2. Free and Informed Choice through Learning Analytics 

The advent of Learning Management Systems (LMS) enables the digital data genesis of student activities in 
and outside of the class. Modern LMS track such variables as login frequency, time spent on the system, 
download of materials and resources, completion of exercises, communication and the like (Mwalumbwe 
and Mtebe 2017). This ready availability of digital data spurred the development of learning analytics to 
implement “analytic techniques to help target instructional, curricular, and support resources to support 
the achievement of specific learning goals” (Van Barneveld et al. 2012). 
While early work in learning analytics focused on empowering administrators, intervention theory calls for 
using learning analytics to empower students’ free and informed choice. This meta-requirements calls for 
placing the locus of decision making with students, once they are armed with valid and useful information, 
rather than using grades as a mechanism to enforce behavior (Bain 2004). 
MR2: The ST artifact supporting large introductory college courses must not conflate behavior with learning 

• DP2.1: Activities tracked through DDS have no bearing on the student’s learning assessment (i.e., 
the grade). 

• DP2.2: Assignments and homework are a service to students and have no bearing on the student’s 
learning assessment. 

• DP2.3: Learning assessment is measured, independently of student behavior, through dedicated 
ad-hoc evaluations (i.e. exams). 

MR2 aims at eliminating external incentives for counterproductive behaviors (e.g., coming to class only to 
accrue “participation” points, cheating on homework, or engaging in strategic learning). It also fosters 
learner control, the ability of students to “make their own decisions regarding some aspects of the path, 
flow, or events of instruction” (Williams 1996). While behaviors and activities are not indicative of 
performance and skill acquisition, they are important elements of the learning process. One of the risks of 
learner control is lack of information, whereby students do not realize how well they perform until it is too 
late to redress the situation (Pistilli and Arnold 2010). Thus, an important characteristic of the class of ST 
artifacts for introductory university courses is the ability of students to engage with the material and receive 
appropriate feedback.  
MR3: The ST artifact supporting large introductory college courses treats students as self-responsible units 
and maximizes learner control 

• DP3.1: Regular homework and practice assignments are available to students. 
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• DP3.2: Evaluations and feedback are provided for any assignment students voluntarily submit. 
• DP3.3: Assignments are designed to be automatically evaluated and students are directed to 

physical interactions (e.g., lab hours) to discuss the results if clarification is needed. 
An important tenet of intervention theory is that free choice must be informed choice, based on valid and 
useful information. Note that this requirement goes beyond showing students how they performed on 
homework assignments or examinations. Rather it calls for exposing students to data about all their 
behaviors and to alert them with decision-making data that provides an interpretation of these behaviors. 
For example, with access to ever more comprehensive DDS (MR1), it is possible to reliably classify students 
in risk categories. However, this predictive data is rarely made systematically available to students 
themselves (Jayaprakash et al. 2014) despite the fact that simple interventions such as alert emails that 
spur faculty-student interactions lead to better retention rates (Tinto 2012). 
MR4: The ST artifact supporting large introductory college courses exposes all behavioral and performance 
data as soon as it becomes available 

• DP4.1: Provide a dashboard for visualizing students’ individual behavior and performance. 
• DP4.2: Apply learning analytics techniques to identify and alert at-risk students. 

MR5: The ST artifact supporting large introductory college courses contextualize behavioral and 
performance data for students. 

• DP5.1: Provide a dashboard for visualizing anonymized aggregated current student cohort behavior 
and performance 

• DP5.2: Provide a dashboard for visualizing anonymized behavior and performance by previous 
student cohorts.  

3.2.3. Internal Commitment through Persuasive Technology 

The third principle of intervention theory is internal commitment. Designing technology for maximum 
influence is the realm of the emerging field of persuasive technology. The computer mediation of everyday 
activities (Yoo 2010) elevated the role of IT to that of a potential agent of persuasion (Nass 2010). Persuasive 
technology, defined as “any interactive computing system designed to change people’s attitudes or 
behaviors” (Fogg 2003), can therefore be an agent of influence by delivering persuasive stimuli (Fogg 2009) 
designed to influence the recipients to form, reinforce or change their attitudes or behaviors (Oinas-
Kukkonen 2013). Modern college students are digital natives, comfortable users of personal IT and 
smartphones. With such audience, the use of triggers – those calls to action “that tells people to perform a 
behavior now” (Fogg 2003) – can be very promising. This meta-requirement calls for the utilization (MR6) 
and attentive design (MR7) of IT-enabled signal, spark and facilitator triggers to foster students’ internal 
commitment during the course. 
MR6: The ST artifact supporting large introductory college courses proactively triggers appropriate 
behaviors 

• DP6.1: Utilize signal triggers to remind students of deadlines and commitments (e.g., assignment 
deadlines). 

• DP6.2: Utilize spark triggers to alert at-risk students and urge them to action. 
• DP6.3: Utilize facilitator triggers to reduce obstacles to performing appropriate behaviors (e.g., 

prompting a “question of the day” through a conversational interface). 
While the notion of triggering is intuitively appealing, the difficulty lies in triggering the behavior at the 
appropriate place and time to prompt action without frustrating or annoying the recipient (Intille 2004). 
For example, urging action at times when students are unable to perform it risks causing frustration (Fogg 
2009). Thus, triggering activities must leverage individual preferences. 
MR7: The ST artifact supporting large introductory college courses encourages sustained use by students 
by managing triggering risks. 

• DP7.1: Signal triggers are contextually aware (e.g., reminders are targeted, rather than unqualified 
“gentle reminders”). 
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• DP7.2: Students can customize the acceptable triggering window (e.g., time of day, day of week) or 
suspend triggers (e.g., mute for the day). 

• DP7.3: Students can manage the type of triggers they receive (e.g., Requesting a “question of the 
day”). 

4. Artifact Implementation 
In this section we report on the implementation of the ST artifact and the design iterations over the last 
twelve months. Note that while we report organizational and IT interventions separately for clarity of 
exposition, our focus on the ST artifact ensured the reciprocal shaping between artifact building, 
organizational intervention and evaluation (Sein et al. 2011). We also report preliminary evaluations from 
the first full implementation (i.e., first in-class section with 37 students in Fall 2017).  

4.1. Organizational Intervention 

The course was scheduled on Tuesdays and Thursdays for 80 minutes sessions. On Tuesdays, the instructor 
held interactive lectures covering theoretical material on IT foundations (e.g., networking) and IS 
foundations (e.g., value creation with IT) topics. On Thursdays, using a flipped-classroom pedagogy, the 
class acquired intermediate skills in Microsoft Word and Excel (see the appendix for the complete list of 
topics). The session started with the instructor showing how to perform some of the more difficult or 
conceptually challenging tasks using a purposely designed data file that students could download to follow 
along. After this mini-lecture of 15-30 minutes, the students worked on practice assignments. Each 
assignment followed an ongoing scenario that spanned the duration of the semester and contained links to 
the official Microsoft documentation (both descriptive and video sources) for the skills it required (see 
Figure 1 for a sample). The scenario gave continuity and realism to the work so that students could see how 
their acquisition of increasingly complex skills would translate into their ability to carry out increasingly 
complex work.  
The ST artifact design implemented MR2 by ensuring that no DDS data tracked during class or by the course 
application (see below) was used to compute students’ grade (DP2.1). All assigned activities, such as practice 
assignments, were assessed if the students completed them, but did not contribute to the final evaluation 
(DP2.2). Students’ mastery was measured by way of two exams covering practical skills, five checkups and 
a final team project covering theoretical material (DP2.3). 

The ST artifact design implemented MR3 by providing nine practice assignments over the course of the 
semester. As per the design principles in this meta-requirement, none of the assignments was required. Yet, 
work submitted within the expected one-week deadlines was evaluated (DP3.1). Students received a 
detailed task-by-task report for each assignment, enabling them to see exactly which skill they had not yet 
mastered (DP3.2). The report listed, for each required task, the importance of the task (i.e., assigned points 
value) and the actual points earned by the students (i.e., a percentage of successful completion). Students 
had access to the practice solutions through the course app. However, reports where not intended to 
substitute for human interaction. Rather, they directed students to meet with the instructor or the teaching 
assistants for any questions or clarification students could not answer independently (DP3.3).  

A pedagogical design imperative for the practical section of the course is the use by each student of their 
own personal computer. Unlike the previous online design, which forces everyone to learn the Windows 
version of Word and Excel by relying on a browser-based simulated environment, our pedagogy requires 
students to work on their own machines with a full version of the Microsoft Office applications being 
learned. This approach is realistic, and it mirrors the way students would use the software for school 
projects or at work. For as well designed as a simulated environment might be, it forces learners to practice 
individual tasks, resulting in learning that is formulaic and disjointed. Moreover, the simulated 
environment drastically limits the type of mistakes and “alternative solutions” the student can practice. 
Thus, students don’t develop an overall conceptual understanding of how to use the application to achieve 
their goals (e.g., an analysis in Excel, standardized and efficient document design in Word).  
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Figure 1: Example of Practice assignment 
 

Given our scalability objective, we developed a custom-made solution to automatically evaluate students’ 
performance in the practice assignments (DP3.3). Developing a custom solution was necessary because 
there is no available application in the market that would support both Windows and Mac versions of 
Microsoft Office without relying on a simulated environment. More importantly, we had to be able to create 
synergy between the structure of the practice assignments and the automatic grader as a prerequisite to the 
design-build-evaluate cycle (Hevner et al. 2004) required by the DSR approach. Leveraging the fact that 
Microsoft Office documents are collections of XML files, we used Python to implement grading functions. 
The software program takes as an input a “key file” created by the instructor and, recursively, each student 
file. It first extracts the content of the documents by parsing the XML using the minidom package. For each 
practice assignment, a grading sequence is created by calling generic functions that evaluate each skill that 
comprise the practice assignment using the numpy package to perform calculations on arrays and the 
prettytable and csv packages to output results (see Figure 2 for sample code). These functions seek a match 
between the student work and the key, but they are robust to acceptable alternative solutions. For example, 
if students do not construct a function exactly like the teacher, but necessary elements are present (e.g., the 
name of the function, the cell range) and results are correct, the students will receive credit for the work. 
Note however that the automatic grading software is not designed to minimize human interaction by 
attempting to provide definite answers or pointers to self-help material. Rather it aids students in verifying 
their own progress, and it stimulates human interaction when needed. In other words, armed with the 
report from the automatic grading system, the online assignment key and available sample files, the 
students review their work and evaluate whether they have mastered the skill in the assignment. If they do 
not understand why a specific task is incorrect, or how to correct errors they have made, they are directed 
to visit open labs where they received help from the instructor or a TA. 
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Figure 2: Sample automatic grader code 
 
By controlling the automatic grading system, we have full control of the entire process: from skill 
identification, to framing of exercises to acquire and practice those skills, to the evaluation approach and 
the degrees of freedom allowed in the assessment of student work. Moreover, knowing the structure, 
strengths and limitations of the grading software enables us to design practice assignments that are 
simultaneously realistic, pedagogically sound and evaluable at scale. For example, if students must learn 
how to use different types of conditional formatting rules in Microsoft Excel (e.g., “Highlight Cells Rules” 
and “Top/Bottom Rules”) and the automatic grader cannot evaluate multiple conditions on the same 
column, we structure the assignment so that students apply the first rule on one column and the second 
rule on a different column. In this way, both skills are tested, yet evaluation can reliably occur at scale.  

4.2. Enabling Technology: The Custom Designed Course Application 

We custom-developed the software application enabling the ST artifact on a back-end using the MEAN 
(MongoDB, Express.js, AngularJS, and Node.js) free and open-source JavaScript stack. It runs on a Linux 
OS instance from Amazon Web Services (AWS). We chose cloud hosting because it frees us from server 
maintenance and security responsibilities, while at the same time providing computing and cost scalability 
proportional to the number of users and calls to the host server. The efficiency thus gained enables our 
small team to focus on features development and functionality evolution enabled by the reciprocal shaping 
between artifact building, organizational intervention and evaluation during each semester iteration (Sein 
et al. 2011). The performance of the current iteration was set to scale reliably up to 45 concurrent users 
using a virtual machine with one Intel Xenon family CPU with up to 3.3 GHz and 2GB of RAM (an AWS 
“t2.small” instance). 
For the application front-end we adopted the Bootstrap library and the Embedded JavaScript (EJS) 
template language – ensuring native mobile and desktop compatibility and a responsive app on all 
platforms. The application was entirely developed with HTML, JavaScript, and Cascading Style Sheets. The 
code was version controlled using Git, and it was hosted on GitHub to facilitate collaborative coding. The 
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use of free and open-source technologies for developing and hosting the application was imperative given 
the resource constraints underpinning the project, but also optimal given our design objectives of high 
scalability and reliability.  
The ST artifact design implemented MR1 by requiring students to sign-in to access course material: 
chapters, course slides, practice assignments, topic and test schedules, and performance results. The 
application traffic was tracked and monitored using Google Analytics' (GA) free service. GA enabled the 
collection of students’ behavior data at the session, page, and click event level (DP1.2). During the current 
iteration, the data stream from the Web application was the only one generated on a real-time basis. We 
manually recorded attendance to physical activities, such as lab and class sessions (DP1.1). The architecture 
for tracking completion and performance of required and optional assignments (DP1.3) as well as 
communication outside of physical meeting venues is also in place (DP1.4) but we have yet to leverage the 
data for artifact evaluation. 
The ST artifact design partially implemented MR4 and MR5 in the current iteration. Specifically, in the 
current instantiation of the ST artifact students do not have access to a dynamic dashboard and we did not 
implement any learning analytics models. Instead, we experimented with a reporting system delivering two 
types of custom pdf reports via email. The first type, a detailed task-by-task report contains results from 
practice assignments. We implemented an R script that, using the CSV output of the automatic grading 
software, automatically creates and emails to the student a pdf report with the performance feedback 
detailed in the previous section. 

The second type of reports can be thought of as a static version of the dashboard we are currently building. 
Each report exposes to students their data, detailing behaviors enacted (e.g., attendance, access to the 
materials) and performance on evaluated tasks (DP5.1). For example, students received a chart comparing 
their lab attendance data to the class average. We generated the report for each student twice during the 
semester, at midterm and prior to the final exam. The reports offered a comprehensive overview of 
individual behaviors, in addition to a comparison of individual activities with an aggregate (average) of the 
class.  

5. Evaluation 
At this stage we claim an “improvement” knowledge contribution, focused on “developing new solutions for 
known problems” (Gregor and Hevner 2013, p. 345). This type of contribution should be evaluated based 
on its ability to overcome current suboptimal solutions to the class of problems addressed by the ST artifact. 
A first step in claiming a knowledge contribution of this type is to demonstrate feasibility (Hevner et al. 
2004). Because we are designing a required in-class introductory college course that can scale to large 
numbers of students under resource constraint, the first step in the evaluation is to show that the ST artifact 
can be built, implemented, and that it will be used by the intended audience. We offer such “proof-by-
demonstration” (Nunamaker Jr et al. 1990, p. 98) as the first step in informing the reciprocal shaping 
between the IT artifact and the design of the course. In this section, we present the evaluation of the ST 
artifact and we use it to gather essential feedback (Hevner et al. 2004) to feed into the next iteration of 
artifact construction (see discussion section). 

Our evaluation is based on the analysis of the behavioral DDS we collected throughout the semester (MR1), 
the results of a survey at the end of the semester inquiring about individual app use and seeking feedback 
about the ST artifact design (see Appendix), as well as the standard course evaluation issued by the 
administration. 
With respect to MR1, we find our design to enable the generation of need DDS. Specifically, only 5.56% of 
students reported printing all the theoretical materials and 7.43% reported printing all the practice 
assignments. Thus, we are able to collect accurate resource utilization data (DP1.2) with an approach that 
is scalable since our app resides on the AWS infrastructure. We also evaluate all performance activities, 
required or optional, using electronic means (e.g., the automatic grading software). As a consequence, we 
can scale our collection of performance DDS (DP1.3). All interaction that does not occur during face to face 
meetings is logged in the communication channels used to support the course - email, and Slack – thus 
enabling the unobtrusive generation of interaction DDS (DP1.4). The current design relies on manual 
tracking of attendance to all physical activities (DP1.1). This approach is not scalable, and we are currently 
working on solving this problem (see discussion). 
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As with any other behavior in the course, class attendance was not required (MR2). Despite the prevailing 
rhetoric at the school suggesting that unless students are forced they will not go to class, attendance was 
consistently above 75%. Of the 30 students who completed the course, four attended every class and all but 
three attended at least two thirds of the sessions. While attendance did not statistically correlate to 
performance (see below), it supports our effort to foster human interaction in the learning environment. 
The formal course evaluation showed that the course was well received, with an overall result on a four-
point scale at 3.53 (college total 3.35). Questions influence by the course design included: perception of 
fairness in evaluation (3.56 vs 3.38), assessment of quality of the feedback (3.44 vs 3.28) and stimulation 
of interest in the subject matter (3.67 vs 3.32). 
While they were present and actively engaged during the sessions, in aggregate students did not consistently 
complete the assignments. On time completion was the only requirement to receive feedback, and 
completion steadily declined during the semester – from 69% on the first assignment to 7% on the ninth 
assignment. The results indicate that, while students would start the assignment in class, they rarely 
completed the work during the allotted class time. As a consequence, they would not submit it for 
evaluation. A number of students stated in their feedback that when they sat down to complete the 
assignment at home, the length and complexity of the practice exercise would discourage them. Specifically, 
22 out of the 27 respondents agreed with the statement that “shorter practice assignments would be more 
effective.” In other words, in the first iteration of the implementation the design failed to ensure that 
students would stay on track with the progression of material without using grades to stimulate activity. In 
the discussion we address how the ST artifact design has evolved based on this result. 
Also telling was students timing of preparation for the checkups covering theoretical material. Each 
checkup covered one or two chapters over two weeks (sessions only on Tuesdays). While session started 
two weeks before the evaluation, students could sign up for the checkups at the testing center on any day 
between Monday and Friday during the checkup week (represented by the black horizontal dashed line in 
Figure 3). Access to the tested material occurred immediately before the exam, with the bulk of it during 
the testing time span.  
 

 

Figure 3: Checkup weeks and content access 

 



  

  

  12 

More specifically, on average students prepared for the checkup within a two-day window of taking the test. 
While it would not surprise experienced teachers to find out that students tend to study in the vicinity of 
examinations, one of the design objectives for our ST artifact is indeed to stimulate a more even and 
consistent approach to preparation – without using grades as the incentive. The results of the first iteration 
reiterate the importance of implementing MR6 and MR7 to proactively help students take ownership of the 
learning experience. We also believe that a faster cycle of feedback (see discussion) would stimulate 
students’ attention toward the course.  
Finally, our results show that performance on practical skill development – as measured by the score on 
the exams testing Word and Excel competency – is correlated with the use of external links to the official 
Microsoft documentation. However, when separately regressing the use of external resources on exam 
performance, we find that results hold only for Excel (Table 1). We tested four models with the following 
general specification: 

Mastery (Word|Excel) = β0 + β1 × (linkfr |linkdiv) + β2 × (attendance) + β3 × (completion) + ε 
Where Mastery is tested via a one-hour comprehensive exam. Control variables include attendance and 
assignments completion rate. Independent variables of interest are the frequency of external resources 
utilization (linkfr) and the extent of external resources utilization (linkdiv). Linkfr is measured as the total 
number of external links used, while linkdiv is the total number of external resources used at least once. 

 

 Model 1: Word Model 2: Word Model 3: Excel Model 4: Excel 
(Intercept) 86.9388** 85.7489** 27.7601* 25.0508 
Link Frequency 0.0460  0.5050*  
Link Diversity  0.1228  0.8969** 
Attendance -21.8330 -21.2051 34.1738* 35.5872* 
Assignment Completion 6.7653** 6.4808* 0.6804 -0.1653 
     
Resid.SE 11.84 11.82 15.47 14.95 
F 4.093 4.136 6.216 7.243 
Prob>F 0.0171 0.0164 0.0027 0.0012 
Adj. R-Squared 0.2489 0.2515 0.3585 0.4008 
Note: * denotes significance at α=0.05, and ** denotes significance at α=0.01. 

Table 1. Regression Analysis Results 

 
The tests are independent because there is no overlap of content or external resources in the two exams. 
Resource usage had no effect above and beyond the amount of practice by the students (completion) in 
Word. Conversely, for Excel, each incremental visit to a documentation page or video results in a half-point 
increase in final score (p = 0.0103) and each incremental visit to a new resource results in an almost one-
point increase (out of 100) in final score (p = 0.0041). We ascribe the difference to the fact that most 
students have some familiarity with features in Word but find Excel more difficult both conceptually and 
syntactically. Thus, ready access to explanatory material has a stronger impact on their learning and 
performance in the latter. These results provide important feedback for iterating the ST artifact design along 
two dimensions: a) providing appropriate links to needed material within the flow of student activity and 
b) designing digital nudges that can motivate students to take advantage of the resources, without relying 
on grades or other performance incentives. 

6. Discussion 
The above evaluation was not designed to study how the ST artifact impacted students’ motivation or 
performance. Rather, the evaluation served to inform the design process (Sein, et al. 2011) and point to 
needed ST artifact changes. Based on the evaluation of the first full ST artifact implementation, we iterated 
the design and introduced the following changes ahead of the Spring 2018 semester implementation. 
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The first consideration is that the system is ready to scale to large numbers. All behavioral DDS are 
seamlessly tracked and can be used for analysis with the exception of attendance. Hosting the technology 
on AWS enables almost infinite scalability as the number of students grows. The implementation of the 
design principles associated with MR2 and MR3 was successful. Our evaluation shows that the automatic 
grader is reliable (DP3.3), but the timing of feedback (DP3.2) was reevaluated based on our observations 
and student feedback. Specifically, we “chunked” the assignments to overcome the length of practice 
obstacle and we eliminated deadlines to enable students to receive feedback at any time rather than only 
once a week. Each of the nine practice assignments is subdivided into 4-5 pedagogically consistent chunks. 
Moreover, we have rolled out a drop-file feature in the app that streamlines the workflow for the student. 
Rather than emailing long practice assignments upon completion, the students can drop each completed 
file and resume work outside of class on the remaining ones. Each chunk provides a data file that is 
equivalent to the key of the previous chunk, thus reducing carry-over errors, a change that improves both 
student learning, and the precision of the evaluation produced by the automatic grading software.  
In the new design, the results are not emailed as pdf reports, but they are accessible privately by each 
student in the app through a JSON file produced by the automatic grader. These new features have enabled 
us to grade files every day and lift the lockstep constraint. In other words, any file dropped by the student 
is evaluated and made available in the app, regardless of sequencing of completion. The result is a faster 
cycle of feedback that on-average completes under 24 hours. An added advantage of the current redesign is 
that the current workflow can be further automated, thus freeing resources from the evaluation and 
feedback task. The automatic grading software has reached a level of precision that no longer requires 
manual checking of the output. We are in the process of fully automating it by leveraging compute services 
that support the running of custom code in the cloud (AWS Lambda). When a student drops a file in the 
app, the file is stored in an Amazon S3 bucket. Once the grading software is successfully ported to the AWS 
Lambda service, a message will trigger its execution. The results of the evaluation, a JSON file, is stored in 
MongoDB and becomes immediately visible to the students inside the app. This evolution of the automatic 
grader, currently in development, would achieve the fastest cycle of feedback on practice files (i.e., near 
real-time) in a scalable workflow that could accommodate all the students concurrently taking the course.  
Beyond course material changes, such as the “chunking” of large practice exercises, and the app feature 
changes designed to support them, we have structured the evolution of design principles along two vectors: 
improved data collection, and persuasive technology triggers. Our evaluation of actual student use patterns 
shows that they tended not to print material and instead work within the app. The use of embedded links 
significantly impacted students learning in the practical skills component of the course. These early results 
suggest that the design of the content can simultaneously improve the objective of valid and useful data 
collection through DDS generation and improved pedagogical value. In the next iteration we are focusing 
on embedding valuable multimedia elements and links in the theoretical content. Early examples are 
videos, links to external resources, and embedded widgets (e.g., a password strength evaluation widget in 
the cybersecurity chapter). As the design of content moves away from a book format and closer to an 
interactive knowledge app, we expect students to further limit printing while improving their 
understanding of the material.  
While at this point we have relied heavily on log data to capture student behaviors, we intend to leverage 
emerging multimodal learning analytics techniques (Blikstein and Worsley 2016) to improve our collection 
of valid and useful information at scale. Specifically, we are currently developing an attendance system that 
relies on face recognition. The system is to be used to collect attendance in all co-located learning activities: 
class sessions, lab sessions, review sessions and office hours. Keeping with our design principles, such 
system can be used to record student behaviors to expose them through dashboards and will not be used 
for grading. We also expect the system to become the basis for real-time student recognition during the 
class, once augmented reality solutions become viable. We deem such a system as an important instrument 
to help reduce the feelings of anonymity that pervade students in large classes. 
The second challenge we face, as captured by our results, is the need to think creatively about scalable 
systems that aid in influencing students to practice good learning habits and combat strategic learning. In 
smaller classes, the best teachers are able to motivate students without resorting to the use of requirements 
and grades (Bain 2004). How can the same objective be achieved in larger required courses? We believe 
that persuasive technology (Fogg 2009) and digital nudging (Weinmann et al. 2016) hold promise. We are 
developing two types of triggers, through conversational interfaces, for the next iteration of the course: a) 
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Facilitator triggers, designed to reduce barriers to accomplishing the behavior (e.g., a “question of the day” 
trigger designed to stimulate both interest and reflection on the subject matter covered during the week); 
b) Spark trigger, designed to increase motivation (e.g., alert triggers for ensuring that all students stay on 
task and to raise awareness of at-risk students who are in danger of falling behind).  

7. Conclusions 
The higher education “industry” has not been immune to digital innovation and digital transformation. 
However, there is a growing consensus in the literature that the delivery of high-quality college education 
hinges on the instructor’s ability to engineer a learning environment where students can learn effectively 
(Bain 2004). Thus, we advocate for an approach to the digital innovation in education that leverages, rather 
than “digitize,” the instructor. Innovation is increasingly the outcome of dynamic problem-solution pairings 
(von Hippel and von Krogh 2015), and we argue that the design science approach is best suited to identify 
and advance optimal designs. We consider our socio-technical artifact an early example of what’s possible. 
We continue to iterate the design-build-evaluate cycle of design science research to uncover and solidify the 
design principles of ST artifacts. Those principles should help us address the wicked design problem of 
delivering a required in-class introductory college course, one that is efficiently scalable to large numbers 
of students. 
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Appendix: Course Topics 
 

Table 2 Course topics: Theory and Practice 

Tuesdays: Theory Topics Thursdays: Practice Topics and Number of Tasks 

Introduction to Information Systems MS Word: Creation of a Simple Document 31 

Cybersecurity MS Word: Template Creation and Personalization 49 

Hardware Foundations MS Word: Creation of a Complex Document 31 

Software Foundations MS Excel: Introduction to Formatting 21 

Networking Foundations MS Excel: Using Functions 29 

Information Systems Foundations MS Excel: Worksheet and Workbook Management 46 

Electronic Commerce and IT-enabled Innovation MS Excel: Visualize, Sort and Filter Data 52 

Network Effects and Information Economics MS Excel: Summarizing Data with Pivot Tables 32 

Value Creation with Information Technology MS Excel: Finalizing your Report 23 
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